
Robustness Assessment of a Runway Object
Classifier for Safe Aircraft Taxiing

Yizhak Elboher∗§, Raya Elsaleh∗§ Omri Isac∗§, Mélanie Ducoffe†, Audrey Galametz†, Guillaume Povéda†, Ryma
Boumazouza†, Noémie Cohen† and Guy Katz∗

∗The Hebrew University of Jerusalem †Airbus Central Research & Technology, AI Research

Abstract—As deep neural networks (DNNs) are becoming
the prominent solution for many computational problems, the
aviation industry seeks to explore their potential in alleviat-
ing pilot workload and improving operational safety. However,
the use of DNNs in these types of safety-critical applications
requires a thorough certification process. This need could be
partially addressed through formal verification, which provides
rigorous assurances — e.g., by proving the absence of certain
mispredictions. In this case-study paper, we demonstrate this
process on an image-classifier DNN currently under development
at Airbus, which is intended for use during the aircraft taxiing
phase. We use formal methods to assess this DNN’s robustness to
three common image perturbation types: noise, brightness and
contrast, and some of their combinations. This process entails
multiple invocations of the underlying verifier, which might be
computationally expensive; and we therefore propose a method
that leverages the monotonicity of these robustness properties,
as well as the results of past verification queries, in order
to reduce the overall number of verification queries required
by nearly 60%. Our results indicate the level of robustness
achieved by the DNN classifier under study, and indicate that
it is considerably more vulnerable to noise than to brightness or
contrast perturbations.

I. INTRODUCTION

In recent years, deep neural networks (DNNs) have been
revolutionizing computer science, advancing the state of the
art in many domains [17] — including natural language
processing, computer vision, and many others. In the aviation
domain, aircraft manufacturers are now exploring how deep-
learning-based technologies could decrease the cognitive load
on pilots, while increasing the safety and operational efficiency
of, e.g., airports. In particular, these technologies could prove
useful during the aircraft taxi phase, which often creates an
increased cognitive load on pilots who have to simultaneously
manage the flight plan, the aircraft itself, and any objects on
the tarmac.

Despite their success, DNNs are known to be prone to
various errors. Notable among these are adversarial inputs [6],
which are slightly perturbed inputs that lead to incorrect and
potentially unsafe DNN outputs. While there exist many tech-
niques for efficiently finding adversarial inputs, it is unclear
how to certify that no such examples exist. However, such a
certification process will be required to allow the integration of
DNNs into safety-critical industrial systems, e.g., in aviation.

Aviation authorities involved in managing aircraft certifi-
cation, such as the European Union Aviation Safety Agency

§Authors contributed equally.

(EASA), have recently published the key elements required for
certifying DNN models to be used in aviation.1 There, EASA
particularly emphasizes that DNN verification solutions, to
be applied during the learning and system integration phases,
will likely constitute a means of compliance with regulatory
requirements.2 EASA points out, however, that the current
scalability and the expressiveness of DNN verification tech-
niques is limited.

Typically, DNN formal verification tools seek to prove that,
for a given infinite set of inputs, a DNN only produces outputs
that fall within a safe subspace of the output space. To date,
these tools have been predominantly applied in assessing the
robustness of DNN predictions against specific types of local
input perturbations. Maturing these techniques is thus key in
allowing them to meet the bar needed for DNN certification
in, e.g., aviation. This point is again stressed in EASA’s AI
Roadmap,3 which emphasizes the need for providing more
general guarantees of a DNN’s stability.

Although DNN verification has been making great
strides [1, 7, 8, 9, 12, 13, 14, 15, 16, 19], it has so far been
applied only to a limited number of real-world systems. In this
case-study paper, we study the applicability and scalability
of DNN verification through an object classification use-
case, relevant to the aviation domain and of specific interest
to Airbus. We explore pertinent vision-oriented perturbations
(noise, brightness, and contrast) and use formal verification
to quantify their effects on DNN’s robustness. As a back-
end engine, we use the Marabou DNN verifier [18]. We also
demonstrate that the verification process can be optimized by
leveraging the monotonicity of the studied perturbations.

Our results indicate that while the DNN is highly sensitive
to noise perturbations, it is slightly less vulnerable to contrast
and brightness perturbations. This is a reassuring result, as
these perturbations are strongly correlated with highly un-
predictable operating conditions, especially outdoors. More
broadly, our results showcase the usefulness and potential of
DNN verification in aviation that could easily be extended to
other safety-critical domains.

II. BACKGROUND

Deep Neural Networks. A deep neural network [5] N :
Rn → Rk is comprised of m layers, L1, ..., Lm. Each layer

1https://www.easa.europa.eu/en/downloads/137631/en
2https://www.easa.europa.eu/en/document-library/general-

publications/concepts-design-assurance-neural-networks-codann
3https://www.easa.europa.eu/en/domains/research-innovation/ai

20
24

 A
IA

A 
DA

TC
/I

EE
E 

43
rd

 D
ig

ita
l A

vi
on

ic
s S

ys
te

m
s C

on
fe

re
nc

e 
(D

AS
C)

 |
 9

79
-8

-3
50

3-
49

61
-0

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

DA
SC

62
03

0.
20

24
.1

07
48

68
0

Authorized licensed use limited to: Hebrew University. Downloaded on December 12,2024 at 14:07:54 UTC from IEEE Xplore.  Restrictions apply. 



Li consists of a set of nodes, Si. When N is evaluated, each
node in the input layer is assigned an initial value. Then, the
value of the jth node in the 2 ≤ i < m layer, vij , is computed
as:

vij = f

(
|Si−1|∑
l=1

wi−1
j,l · v

i−1
l + bij

)
where f : R→ R is an activation function and wi−1

j,l , bij ∈ R
are the respective weights and biases of N . The most common
activation function is the rectified linear unit (ReLU), defined
as ReLU(x) = max(0, x). Finally, neurons in the output layer
are assigned values using an affine combination only. The
output of the DNN is the values of the nodes in its final
layer. An image-classifier N : Rn → C ⊂ N assigns each
input image x′ a class c ∈ C, which describes the main object
depicted in x′. For convenience, x′ is regarded as both a vector
and a matrix, interchangeably. For an example of a DNN and
its evaluation, see Appendix B.

DNN Verification. For a DNN N : Rn → Rk, input property
P ⊂ Rn and output property Q ⊂ Rk, the DNN verification
problem is to decide whether there exist x ∈ P and y ∈ Q
such thatN (x) = y. If such a pair exists, the verification query
(N , P,Q) is satisfiable (SAT), and the pair (x, y) is called
a witness; otherwise, it is unsatisfiable (UNSAT). Typically,
Q encodes an undesired behavior, and so a witness is a
counterexample that demonstrates an error.

III. INDUSTRIAL USE-CASE: RUNWAY OBJECT
CLASSIFICATION

A. Runway Object Classification

In 2020, Airbus concluded its Autonomous Taxi, Take-Off
and Landing (ATTOL) project.4 The objective of ATTOL was
to design a fully autonomous controller for the taxi, take-
off, approach and landing phases of a commercial aircraft
— by leveraging state-of-the-art technology, and in particular
deep-learning models used for vision-assisted functions. As
part of the project, 400 flights over a period of two years
were instrumented to collect video data from aircraft in op-
eration. This unique dataset is currently being used to further
mature several vision-based functions within Airbus. Using
this dataset, it was observed that the taxi phase of the flight,
in particular, could benefit from autonomous support. During
this phase, pilots are conducting aircraft operations, while
simultaneously dealing with the unpredictable nature of airport
management and traffic. Object identification, in particular of
potential threats on the runway, could thus support the pilots
during this phase. Several object classifiers are being tested
for this purpose within Airbus.

In this study, we focus on images of runway objects
extracted from taxiing videos — i.e., all objects are observed
from an aircraft on the ground. We extract (224 × 224)
pixel images from the original, high-resolution gray-scaled
images, centered on a specific runway object. A DNN N1 is
trained on resampled (32×32) images, to improve verification

4https://www.airbus.com/en/newsroom/press-releases/2020-06-airbus-
concludes-attol-with-fully-autonomous-flight-tests

performance. The four considered classes are Aircraft, Vehicle,
Person, and Negative, extracted where no object is found. N1

is a feedforward DNN, with roughly 8000 ReLU neurons, and
an accuracy of 85.3% on the test dataset (1145/1342 images).5

B. Properties of Interest

We seek to verify the local robustness of a runway object
classifier N ; i.e., that small perturbations around a correctly-
classified input x′ do not cause misclassification, encoded
by Q. We specify Q as: Qx′ := C \ N (x′). We use the
input property P to define three perturbation types: noise,
brightness, and contrast.

Noise. In this widely studied form of perturbation [2, 11], the
perturbed input images are taken from an ϵ-ball around x′:
P = Bϵ(x

′), where Bϵ is the ℓ∞-ϵ-ball around x′, and ϵ > 0.

Brightness. A brightness perturbation is caused by shifting all
pixels of x′ by a constant value b: bright(x′, b) := x′+ b ·Jn,
where Jn is the all-ones matrix of size n×n. We define P =
brightβ(x

′) := {bright(x′, b) | |b| ≤ β} for some β > 0, to
allow all brightness perturbations of absolute value at most β.
See Appendix A for a visual example.

Contrast. A contrast perturbation con(x′, c, µ) is created
by scaling all image pixels multiplicatively, rescaling their
difference from a mean value µ ∈ [0, 1] by a multiplicative
constant c ∈ R≥0: con(x′, c, µ) := µ · Jn + c · (x′ − µ · Jn).
We then set P = conγ,µ(x

′) := {con(x′, c, µ) | |c− 1| ≤ γ},
to encode all contrast perturbations with value of at most γ,
where µ remains constant and γ ∈ [0, 1]. See Appendix A for
a visual example.

IV. THE FORMAL VERIFICATION PROCESS

A. Encoding Brightness and Contrast Perturbations

We now show how to encode the brightness and contrast
properties described in Section II into verification queries that
assess robustness to noise perturbations over a modified input
space. This reduction allows us to use any of the available
tools that support such queries as a backend. The encoding
is performed by adding a new input layer to the network, as
illustrated in Fig. 1.

x′
1

x′
n

b

x1

xn

(a) Brightness. Weights are set to 1,
biases to 0.

c

x1

xn

x′
1 − µ

x′
i − µ

x′
n − µ

(b) Contrast. Biases are set to µ.

Fig. 1: Modeling brightness and contrast perturbations by
adding an input layer.

5These DNNs will not be used as such in Airbus products. More robust
models are currently under development, in part supported by analyses such
as the one presented here.

Authorized licensed use limited to: Hebrew University. Downloaded on December 12,2024 at 14:07:54 UTC from IEEE Xplore.  Restrictions apply. 



Brightness. The new input layer clones the original input
layer and adds a single neuron b to represent the brightness
perturbations. The weights from the new layer to the following,
original input layer are set to 1 so that every variable xi ∈ x is
assigned xi = x′

i+b. The bounds for the new neuron are set to
b ≤ β, b ≥ −β, whereas inputs x′

i are exactly restricted to the
input around which the robustness is being verified. We note
that in this case, this single construction allows the verification
of the robustness around any input, by selecting appropriate
x′
i values. We further note that this construction can be used

to simultaneously encode noise and brightness perturbations,
by bounding the input neurons x′

i to an ϵ-ball around an input
of interest. This gives rise to two-dimensional queries, for any
combination of β and ϵ values, which allows modeling a more
realistic nature of perturbations.

Contrast. The new input layer contains a single input neuron,
c. We treat µ, x′ as constants, and set the weights from the
new layer in a way that every neuron xi in that layer is
assigned xi = (x′

i − µ) · c + µ. Finally, we set the bounds
c ≥ 1 − γ, c ≤ 1 + γ. We note that the contrast perturbation
is multiplicative with respect to c, µ, and the input image
x′. Since DNN verification algorithms typically only support
linear operations, either x′ or c should be fixed. Therefore,
a separate DNN is constructed for each input image; and
there is no immediate way to encode a simultaneous noise
perturbation.

B. Incremental Verification Algorithm

For any fixed image x′, we seek to solve numerous bright-
ness, noise and contrast robustness queries, with different
values of ϵ, β and γ. Since executing these queries is com-
putationally expensive, we exploit the monotonicity of these
properties to reduce their number. Let β′ < β, ϵ′ < ϵ and
γ′ < γ. If there exists an adversarial example for parameters
β′, ϵ′ or γ′, it then also constitutes a counterexample for a
query with parameters β, ϵ or γ respectively. Conversely, if
the network is robust with respect to parameters β, ϵ or γ,
then it is also robust to perturbation with parameters β′, ϵ′ or
γ′ respectively.

We exploit this property in a binary search algorithm for
contrast queries, and in our incremental verification algorithm
for brightness and noise queries. Intuitively, the algorithm ini-
tializes a grid representing all combinations of ϵ, β parameters
that need to be verified. The observation above states that for
every row and every column, there is at most one transition
from UNSAT to SAT, which is represented by a step graph
within the grid. The algorithm then discovers this step graph
instead of solving all queries in the grid.

The pseudo-code of the algorithm appears in Algorithm 1.
Formally, Algorithm 1 assumes the existence of a verification
procedure verify(N , x′, β, ϵ) which verifies the robustness of
a network N to noise perturbations of value at most ϵ and
brightness perturbations of value at most β around an image
x′. The algorithm is given an input network N , an image
x′, and two increasingly ordered arrays B,E, containing the
values of parameters β and ϵ we intend to check, respectively.
Then, the algorithm initializes a grid representing all possible

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2: Example of incremental verification algorithm’s run.

combinations of parameters (β, ϵ) ∈ B ×E, and a temporary
tuple (b, e) representing the lowest value of β and highest
value ϵ and corresponding to the top-left corner of the grid.
The algorithm then iteratively calls verify(N , x′, b, e) to pop-
ulate the grid. If the result is SAT, then for all queries with
the same ϵ value, and a greater β (all cells to the right of
the current cell) the result is SAT as well.6 We then mark the
relevant cells with SAT and decrement ϵ to the next value.
If the result is UNSAT, then for all queries with the same β
value, and a smaller ϵ (all cells to the bottom of the current
cell), the result is UNSAT as well. We then mark the relevant
cells with UNSAT and increment β to the next value. When the
current cell reaches the final column or row, a typical binary
search algorithm is used to find the remaining results. Note
that the algorithm requires only O(m) calls to the verifier
while naively solving all queries requires O(m2) calls, where
m is the number of possible values of β or ϵ (the maximal of
the two). For contrast queries, the binary search allows using
a logarithmic number of invocations of the verifier instead of
a linear number.

To support the use of real-world verifiers, we also address
cases where the verifier returns a TIMEOUT or error value.
When these cases occur, we mark the corresponding cell (e, b)
with an UNKNOWN result, and increment the value of b as if
the result was SAT. In addition, we use binary search for the
remaining values of e, where the value of b is constant. Note
that in the presence of TIMEOUT, the bound of O(m) calls
to the verifier is not guaranteed.

Example. In Fig. 2, the grid represents the options for
verification queries of robustness for brightness and noise
perturbation, with parameters (β, ϵ) ∈ [0.1, 0.2, 0.3, 0.4, 0.5]×
[0.1, 0.2, 0.3, 0.4]. The purple cell represents the current tuple
(β, ϵ). Red marks UNSAT queries, green marks SAT queries.
Rich colors represent a call for the verifier, while pale
colors represent a deduction of satisfiability. The algorithm
first queries the verifier to verify robustness with parameters
(0.4, 0.1), which returns UNSAT. Then, the algorithm deduces
UNSAT for queries with β = 0.1, ϵ < 0.4 without calling
the verifier again, and queries the verifier to verify robustness
with parameters (0.4, 0.2). Since the verifier returns UNSAT
again, the algorithm deduces UNSAT for queries with β =
0.2, ϵ < 0.4 and queries the verifier to verify robustness with

6Note that this is the case for all queries with greater values of ϵ, β (the
top right rectangle), though the values of queries with a greater ϵ value are
already decided. A dual argument applies to the UNSAT case as well.

Authorized licensed use limited to: Hebrew University. Downloaded on December 12,2024 at 14:07:54 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1 Incremental verification algorithm
Input: Arrays B,E with values of ϵ, β in increasing order,
respectively, a verifier V, a network N and an image x′.
Output: A grid representing the robustness of N to brightness
and noise perturbations around x′, for all values in B,E.
b← 0
e← length(E)− 1
grid← 0length(B)×length(E)

while b < length(B) and e ≥ 0 do
if b = length(B)− 1 then

Binary search with remaining values of e; b is
constant.

end if
if e = 0 then

Binary search with remaining values of b; e is
constant.

end if
result← V.verify(N , x′, E[e], B[b])
if result = SAT then
∀i ≥ b : grid[i][e]← SAT
e← e− 1

else if result = UNSAT then
∀j ≤ e : grid[b][j]← UNSAT
b← b+ 1

else ▷ Timeout, Memoryout, etc.
grid[b][e]← UNKNOWN
Binary search with remaining values of e; b is

constant.
b← b+ 1

end if
end while
return grid

parameters (0.4, 0.3). This time, the verifier returns SAT, so
the algorithm deduces SAT for queries with β > 0.2, ϵ = 0.4.
The algorithm then queries the verifier to verify robustness
with parameters (0.3, 0.3). The rest of the iterations continue
similarly.

V. EVALUATION

For the 1145 correctly classified test images, we ver-
ify N1’s robustness to noise and brightness for parameters
(ϵ, β) ∈ [0, 0.05, 0.1, 0.15, 0.2]× [0, 0.1, 0.2, 0.3, 0.4, 0.5], and
to contrast perturbations with mean pixel value µ = 0.2585
and γ ∈ [0.1, 0.2, ..., 0.9]. We make use of the incremental
verification algorithm for noise and brightness perturbations.
For contrast, we run a binary search algorithm to find the
minimal γ parameter for which the query is UNSAT. We use
an arbitrary timeout of 22.5K seconds per single query, and
80 hours for the overall runtime to analyze a single input
point. The results are summarized below and additional details
appear in the preprint version of the paper [4].

Fig. 3 shows the percentage of UNSAT queries for noise and
brightness perturbations, indicating the absence of counter-
examples, of 1097 points for which the analysis has not
timed out (the points with timeout analysis were not included).

0 0.1 0.2 0.3 0.4 0.5
Brightness perturbation

0.
2

0.
15

0.
1

0.
05

0
Ep

sil
on

 b
al

l r
eg

io
n

0.2% 0.2% 0.2% 0.1% 0.0% 0.0%

0.4% 0.4% 0.3% 0.3% 0.3% 0.3%

1.3% 0.9% 0.7% 0.5% 0.5% 0.5%

22.2% 18.3% 13.3% 9.3% 6.4% 4.7%

100.0% 97.8% 95.2% 92.3% 90.1% 87.3%

0

20

40

60

80

100

Fig. 3: Percentage of UNSAT queries per noise and brightness
parameters.

The incremental verification algorithm invoked the verifier on
13231 queries, whereas the results of 59% of the queries were
deduced, using the incremental approach, without additional
invocations. Fig. 4 shows the percentage of UNSAT queries for
contrast perturbations within the range [1−γ, 1+γ]. The binary
search algorithm invoked the verifier 3915 times, whereas the
remaining 62% of the queries were deduced without additional
invocations. For contrast perturbations, all queries terminated
without a timeout.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Max. contrast perturbation (deviation from 1)

96.3% 93.0% 88.1% 82.3% 73.2% 59.4% 42.7% 26.8% 21.0%

Fig. 4: Percentage of UNSAT queries per contrast parameter

Overall, the results indicate that the classifier shows similar
robustness to contrast and brightness perturbations. However,
it is significantly more sensitive to noise perturbations. We note
that noise in images comes from various sources. Some noise
is inherent to the camera’s sensor (e.g., impulse noise, thermal
noise) or its associated electronics (e.g. shot noise). Other
noise is a direct consequence of operating and environmental
conditions (e.g., low-light conditions, scenery colors, etc.).
Brightness and contrast also fall into this category; they are
both inherently related to operating conditions. Although noise
originating from image acquisition is certainly a nuisance, it
can in part be reduced by noise reduction techniques, as well
as an expert understanding of the camera characteristics and
continuous quality tracking. Other kinds of noise are more
challenging to predict or mitigate, as the number of different
operating conditions (weather, time of day, scenery, etc.) is
effectively infinite. Therefore, it is somehow reassuring that
our classifier seems to be less vulnerable to contrast and
brightness, as these perturbations are highly unpredictable.

VI. CONCLUSION

As numerous state-of-the-art image classifiers are vulnera-
ble to small image perturbations, robustness is a key safety re-

Authorized licensed use limited to: Hebrew University. Downloaded on December 12,2024 at 14:07:54 UTC from IEEE Xplore.  Restrictions apply. 



quirement; and certification authorities, such as EASA, might
require confirmed robustness as part of the model certification
process in the aerospace domain.7 This work explores the
challenges that the industry is facing in its effort to safely
deploy deep-learning-based systems, and the benefits that
formal methods can afford in assessing the robustness of DNN
models to various perturbations. One significant challenge is
the limited scalability of current verification techniques.

In this work we focused on assessing the robustness of
a prototype runway object classifier provided by Airbus,
with respect to three common image perturbations types. To
partially address the scalability challenge, we exploited the
monotonicity of these perturbations in designing an algorithm
that improved the performance of the overall verification
process. Moving forward, we aim to assess additional, larger,
Airbus networks with higher-resolution input; and to ver-
ify their robustness to simultaneous brightness and contrast
perturbations. To improve performance, which will enable
verifying larger networks, we intend to examine applying DNN
abstraction methods [3] to the verification queries we have
used. In addition, we aspire to increase the reliability of the
results by using the proof producing version of Marabou [10].

Acknowledgements. This research was partially funded by
Airbus Central Research & Technology, AI Research.

REFERENCES

[1] Brix, C., Müller, M., Bak, S., Johnson, T., Liu, C.: First
Three Years of the International Verification of Neural
Networks Competition (VNN-COMP). Int. Journal on
Software Tools for Technology Transfer pp. 1–11 (2023)

[2] Casadio, M., Komendantskaya, E., Daggitt, M., Kokke,
W., Katz, G., Amir, G., Refaeli, I.: Neural Network
Robustness as a Verification Property: A Principled Case
Study. In: Proc. 34th Int. Conf. on Computer Aided
Verification (CAV). pp. 219–231 (2022)

[3] Elboher, Y., Gottschlich, J., Katz, G.: An Abstraction-
Based Framework for Neural Network Verification. In:
Proc. 32nd Int. Conf. on Computer Aided Verification
(CAV). pp. 43–65 (2020)

[4] Elboher, Y., Elsaleh, R., Isac, O., Ducoffe, M., Galametz,
A., Povéda, G., Boumazouza, R., Cohen, N., Katz, G.:
Robustness Assessment of a Runway Object Classi-
fier for Safe Aircraft Taxiing (2024), technical Report.
http://arxiv.org/abs/2402.00035

[5] Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning.
MIT Press (2016)

[6] Goodfellow, I., Shlens, J., Szegedy, C.: Explaining and
Harnessing Adversarial Examples (2014), technical Re-
port. http://arxiv.org/abs/1412.6572

[7] Gopinath, D., Katz, G., Pǎsǎreanu, C., Barrett, C.: Deep-
Safe: A Data-driven Approach for Assessing Robustness
of Neural Networks. In: Proc. 16th. Int. Symposium
on Automated Technology for Verification and Analysis
(ATVA). pp. 3–19 (2018)

7https://www.easa.europa.eu/en/easa-concept-paper-first-usable-guidance-
level-1- machine-learning-applications-proposed-issue-01pdf

[8] Henriksen, P., Lomuscio, A.: Efficient Neural Network
Verification via Adaptive Refinement and Adversarial
Search. In: Proc. 24th European Conf. on Artificial
Intelligence (ECAI). pp. 2513–2520 (2020)

[9] Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety
Verification of Deep Neural Networks. In: Proc. 29th Int.
Conf. on Computer Aided Verification (CAV). pp. 3–29
(2017)

[10] Isac, O., Barrett, C., Zhang, M., Katz, G.: Neural Net-
work Verification with Proof Production. In: Proc. 22nd
Int. Conf. on Formal Methods in Computer-Aided Design
(FMCAD). pp. 38–48 (2022)

[11] Katz, G., Barrett, C., Dill, D., Julian, K., Kochenderfer,
M.: Reluplex: a Calculus for Reasoning about Deep
Neural Networks. Formal Methods in System Design
(FMSD) (2021)

[12] Lyu, Z., Ko, C.Y., Kong, Z., Wong, N., Lin, D., Daniel,
L.: Fastened Crown: Tightened Neural Network Robust-
ness Certificates. In: Proc. 34th AAAI Conf. on Artificial
Intelligence (AAAI). pp. 5037–5044 (2020)

[13] Mangal, R., Nori, A., Orso, A.: Robustness of Neural
Networks: A Probabilistic and Practical Approach. In:
Proc. IEEE/ACM 41st Int. Conf. on Software Engineer-
ing: New Ideas and Emerging Results (ICSE-NIER). pp.
93–96 (2019)

[14] Müller, M., Makarchuk, G., Singh, G., Püschel, M.,
Vechev, M.: PRIMA: General and Precise Neural Net-
work Certification via Scalable Convex Hull Approxi-
mations. In: Proc. 49th ACM SIGPLAN Symposium on
Principles of Programming Languages (POPL) (2022)

[15] Ostrovsky, M., Barrett, C., Katz, G.: An Abstraction-
Refinement Approach to Verifying Convolutional Neural
Networks. In: Proc. 20th. Int. Symposium on Automated
Technology for Verification and Analysis (ATVA). pp.
391–396 (2022)

[16] Singh, G., Gehr, T., Puschel, M., Vechev, M.: An Abstract
Domain for Certifying Neural Networks. In: Proc. 46th
ACM SIGPLAN Symposium on Principles of Program-
ming Languages (POPL) (2019)

[17] Szegedy, C., Toshev, A., Erhan, D.: Deep Neural Net-
works for Object Detection. Advances in Neural Infor-
mation Processing Systems 26 (2013)

[18] Wu, H., Isac, O., Zeljić, A., Tagomori, T., Daggitt, M.,
Kokke, W., Refaeli, I., Amir, G., Julian, K., Bassan,
S., Huang, P., Lahav, O., Wu, M., Zhang, M., Komen-
dantskaya, E., Katz, G., Barrett, C.: Marabou 2.0: A
Versatile Formal Analyzer of Neural Networks. In: Proc.
36th Int. Conf. on Computer Aided Verification (CAV)
(2024)

[19] Wu, H., Zeljić, A., Katz, G., Barrett, C.: Efficient Neural
Network Analysis with Sum-of-Infeasibilities. In: Proc.
28th Int. Conf. on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS). pp. 143–
163 (2022)

Authorized licensed use limited to: Hebrew University. Downloaded on December 12,2024 at 14:07:54 UTC from IEEE Xplore.  Restrictions apply. 



Appendix
A. VISUALIZATION OF BRIGHTNESS AND CONTRAST

PERTURBATIONS

Fig. 5: Brightness perturbations for an ‘Aircraft’ and a ‘Person’
from the test set.

Fig. 6: Contrast perturbations for an ‘Aircraft’ and a ‘Vehicle’
from the test set.

Fig. 7: Levels of l∞-norm bounded perturbations for an
‘Aircraft’ and a ‘Vehicle’.

Fig. 8: Illustration of an ‘Aircraft’ image at different resolu-
tions.

B. AN EXAMPLE OF DNN

Consider the DNN with 4 layers that appears in Fig. 9,
where all biases are set to zero and are ignored. For input
⟨2,−1⟩, the first node in the second layer evaluates to ReLU(2·
1.5 + −1 ·(−1)) = ReLU(4) = 4; and the second node in the
second layer evaluates to ReLU(2 · −1) = ReLU(−2) = 0;
Then the node in the third layer evaluates to ReLU(4−0) = 4.
and thus the output of the network is 2.

x1

x2

v1

v2

v3 y

1.5

−1

2

1

−1

0.5

ReLU

ReLU

ReLU

Fig. 9: A toy DNN.

Authorized licensed use limited to: Hebrew University. Downloaded on December 12,2024 at 14:07:54 UTC from IEEE Xplore.  Restrictions apply. 


