
Safe and Reliable Training
of Learning-Based Aerospace Controllers

Udayan Mandal
Center for AI Safety
Stanford University

Stanford, USA
udayanm@stanford.edu

Guy Amir
School of CS & Engineering

The Hebrew University of Jerusalem
Jerusalem, Israel

guyam@cs.huji.ac.il

Haoze Wu
Center for AI Safety
Stanford University

Stanford, USA
haozewu@stanford.edu

Ieva Daukantas
Department of Computer Science

IT University of Copenhagen
Copenhagen, Denmark

daukantas@itu.dk

Fletcher Lee Newell
Center for AI Safety
Stanford University

Stanford, USA
flnewell@stanford.edu

Umberto Ravaioli
Google

Mountain View, USA
uravaioli@google.com

Baoluo Meng
GE Aerospace Research

Niskayuna, USA
baoluo.meng@ge.com

Michael Durling
GE Aerospace Research

Niskayuna, USA
durling@ge.com

Kerianne Hobbs
Air Force Research Laboratory

US Air Force
Dayton, USA

kerianne.hobbs@afrl.af.mil

Milan Ganai
Department of Computer Science

Stanford University
Stanford, USA

mganai@stanford.edu

Tobey Shim
Department of Data Science

Stanford University
Stanford, USA

tshim24@stanford.edu

Guy Katz
School of CS & Engineering

The Hebrew University of Jerusalem
Jerusalem, Israel

guykatz@cs.huji.ac.il

Clark Barrett
Center for AI Safety
Stanford University

Stanford, USA
barrett@stanford.edu

Abstract—In recent years, deep reinforcement learning (DRL)
approaches have generated highly successful controllers for a
myriad of complex domains. However, the opaque nature of
these models limits their applicability in aerospace systems and
sasfety-critical domains, in which a single mistake can have dire
consequences. In this paper, we present novel advancements in
both the training and verification of DRL controllers, which
can help ensure their safe behavior. We showcase a design-for-
verification approach utilizing k-induction and demonstrate its use
in verifying liveness properties. In addition, we also give a brief
overview of neural Lyapunov Barrier certificates and summarize
their capabilities on a case study. Finally, we describe several
other novel reachability-based approaches which, despite failing to
provide guarantees of interest, could be effective for verification
of other DRL systems, and could be of further interest to the
community.

Index Terms—AI Safety, Deep Reinforcement Learning, Formal
Verification, Deep Neural Network Verification

I. INTRODUCTION

Deep reinforcement learning (DRL) has gained significant
popularity in recent years, reaching state-of-the-art performance
in various domains. One such domain is aerospace systems, in
which DRL models are under consideration for replacing years-
old software by learning to efficiently control airborne platforms
and spacecraft. However, although they perform well empiri-
cally, DRL systems have an opaque decision-making process,
making them challenging to reason about. More importantly,
this opacity raises critical questions about safety and security
(e.g., How can we ensure that the spacecraft will never violate
a velocity constraint? Will it always reach its destination?)
which are difficult to answer. These reliability concerns are a
significant obstacle to deploying DRL controllers in real-world
systems, where even a single mistake cannot be tolerated.

To cope with this urgent need, a myriad of DRL training
techniques have been put forth in recent years to enhance
the performance of such systems. However, these current ap-
proaches suffer from two main drawbacks: (i) they are usually
not geared towards improving safety and reliability (which
is key in aerospace systems); and (ii) they are heuristic in
nature and do not afford any formal guarantees. At the same
time, the formal methods community has been developing
methods for formally and rigorously assessing the reliability
of DRL systems. However, although such methods are useful
for identifying whether a system is safe, they are typically not
incorporated into the DRL training process, but are rather used
only afterwards.

In this work, we begin bridging this gap by proposing a novel
design-for-verification approach that can be incorporated during
the DRL training process. Our approach both modifies the
training loop to be more verification-friendly and also utilizes
formal verification (in our case, k-induction), to ensure the
correctness of the training. We also report a summary of our
recent efforts to use Neural Lyapunov Barrier certificates [26]
to generate DRL agents that not only perform well on large
batches of data, but also meet rigorous correctness criteria as
measured by state-of-the-art verification tools.

Finally, we introduce additional novel reachability-based ap-
proaches for providing safety and liveness guarantees about a
DRL system. These approaches are derived from prior work
on backward-tube reachability, forward-tube reachability, and
abstraction-based reachability methods. Moreover, these ap-
proaches all follow a similar paradigm: the reachable space
covered by all possible paths from the starting state space is
over-approximated using a verification engine, and safety and20

24
 A

IA
A

DA
TC

/I
EE

E
43

rd
 D

ig
ita

l A
vi

on
ic

s S
ys

te
m

s C
on

fe
re

nc
e

(D
AS

C)
 |

 9
79

-8
-3

50
3-

49
61

-0
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
DA

SC
62

03
0.

20
24

.1
07

49
49

9

Authorized licensed use limited to: Hebrew University. Downloaded on December 12,2024 at 14:07:22 UTC from IEEE Xplore. Restrictions apply.

liveness properties are checked over this over-approximated
state space.

To demonstrate the usefulness of our approaches, we apply
them to a benchmark satellite-control model developed in
collaboration with industry partners (GE Aerospace Research
and the U.S. Air Force). We demonstrate that liveness can be
verified using our k-induction approach. Additionally, as a point
of comparison, we showcase that the certificate-based approach
is indeed able to generate a controller that provably behaves
safely. Notably, the problem setting and controller complexity
are beyond that acheived in previous work on formally verified
controllers.

The other reachability-based methods fail on this benchmark.
However, we believe that these failed attempts: (i) demonstrate
the merits of our successful approaches in handling complex,
nontrivial properties; (ii) can be of value to the community, by
shedding light on vulnerabilities of alternate methods; and (iii)
could be potentially successful when applied over different DRL
systems.

We view this work as an important step towards the safe and
reliable deployment of DRL controllers in real-world systems,
especially in the complex domain of avionics. We additionally
hope that our work will further motivate additional research
in neural network verification, DRL safety, and specifically,
their role in the important domain of DRL-controlled aerospace
systems.

The rest of the paper is organized as follows. In Sec. II,
we cover background on deep learning, DRL, and verification,
and we also introduce Neural Lyapunov Barrier functions. In
Sec. III, we introduce our benchmark problem, a 2D spacecraft
docking challenge. We subsequently introduce our k-induction
technique in Sec. IV, and we present alternative verification
approaches in Sec. V. 1 Finally, we conclude in Sec. VI.

II. PRELIMINARIES AND RELATED WORK

A. Safety and Liveness

In this paper, we are interested in obtaining DRL controllers
that satisfy safety and liveness properties [2] in discrete-time
settings.
Safety. In a sequence satisfying a safety property, a bad state
is never reached. For the set of system states X , let τ ⊆ X ∗ be
the set of potential system trajectories. We say a trajectory α
satisfies safety property P1 if and only if each state in α satisfies
property P1. More formally:

∀α ∶ α ∈ τ.∀x ∈ α. x ⊧ P1. (1)

Finite-length trajectories terminating in a “bad” state (where P1

does not hold) constitute the set of trajectories in violation of
the safety property.
Liveness. On the other hand, a liveness property indicates a
good state is eventually reached. A liveness property P2 is
satisfied by trajectory α if and only if there exists a state x
in α where P2 holds. Defining τ∞ as the set of infinite-length
trajectories, we formally specify liveness property P2 as:

∀α ∶ α ∈ τ∞. ∃x ∈ α. x ⊧ P2. (2)

1Code for these approaches is available at:
github.com/NeuralNetworkVerification/artifact-dasc-docking

Infinite-length trajectories which contain no “good” states (i.e.,
no states where P2 holds) constitute the set of trajectories in
violation of the liveness property.

B. DNNs, DNN Verification, and Dynamical Systems.

Deep Learning. Deep neural networks (DNNs) consist of
layers of neurons that perform some (usually nonlinear) trans-
formation of the input [38]. In this paper, we investigate deep
reinforcement learning (DRL), where we train a DNN to obtain
a policy, which maps states to actions that control a system [54].
DNN Verification. Given (i) a trained DNN (e.g., a DRL agent)
N ; (ii) a pre-condition P on the DNN’s inputs, limiting the
input assignments; and (iii) a post-condition Q on the DNN’s
outputs, the goal of DNN verification is to determine whether
the property P (x) → Q(N(x)) holds for any neural network
input x. In many DNN verifiers (a.k.a., verification engines),
this task is equivalently reduced to determining the satisfiability
of the formula P (x) ∧ ¬Q(N(x)). If the formula is satisfiable
(SAT), then there is an input that satisfies the pre-condition
and violates the post-condition, which means the property is
violated. On the other hand, if the formula is unsatisfiable
(UNSAT), then the property holds. It has been shown [49] that
verification of piece-wise-linear DNNs is NP-complete. In re-
cent years, the formal methods community has put forth various
techniques for verifying and improving DNN reliability [1],
[5], [6], [9], [13], [17], [23], [70]. These techniques include
SMT-based methods [8], [45], [50], [52], optimization-based
methods [15], [30], [55], [68], methods based on abstraction-
refinement [10], [22], [31], [32], [58], [59], [65], methods based
on shielding [24], [51], [63], and more.
Discrete-Time Dynamical Systems. We consider discrete-
time dynamical systems, particularly systems whose trajectories
satisfy the equation:

xt+1 = f(xt, ut), (3)

in which the transition function f takes as inputs the current
state xt ∈ X and a control ut ∈ U and produces as output the
subsequent state xt+1. To control these systems, we employ
a policy π ∶ X → U that takes in a state x ∈ X and
outputs a control action u = π(x). In DRL, the controller
π is realized by a trained DNN agent. These learning-based
controllers have proven to be effective in many real-world
settings including robotics [26], biomedical systems [28], and
energy management [44], due to their expressive power and
ability to generalize to unseen, complex environments [67].

C. Control Lyapunov Barrier Functions

The problem of verifying safety and liveness properties in
a dynamical system can be solved by finding a function V ∶
X ↦ R with certain properties. Control theory identifies two
fundamental types of functions [53].
Lyapunov Functions. Lyapunov functions, a.k.a., Control
Lyapunov functions, capture the energy level at a particular
state: over time, energy is dissipated along a trajectory until
the system attains zero-energy equilibrium [41]. Lyapunov
functions can guarantee asymptotic stability, which ensures
the system eventually converges to some goal state (thereby

Authorized licensed use limited to: Hebrew University. Downloaded on December 12,2024 at 14:07:22 UTC from IEEE Xplore. Restrictions apply.

satisfying a liveness property). Lyapunov functions must be (i)
equal to 0 at equilibrium, (ii) strictly positive at all other states;
and (iii) monotonically decreasing [18], [19], [36].

Barrier Functions. Barrier functions [4], a.k.a., Control Bar-
rier Functions, guarantee that a system never enters an unsafe
region (i.e., a “bad” state) in the state space. This is achieved by
setting the function value to be above some threshold for unsafe
states and then verifying that the system can never transition
to a state where the function is above the threshold [3], [12],
[72]. Previous work [60], [61], [69], [75] demonstrates how to
obtain Barrier functions for various safety-critical tasks such
as pedestrian avoidance, neural radiance field-based obstacle
navigation [57], and multi-agent control.

Control Lyapunov Barrier Functions. Often, it is necessary
to ensure both safety and liveness properties simultaneously.
In such cases, we can employ a Control Lyapunov Barrier
Function (CLBF), which integrates the properties and guaran-
tees of both Control Lyapunov functions and Control Barrier
functions [27]. CLBFs can solve reach-while-avoid tasks [29],
which we discuss next.

Reach-while-Avoid Tasks. The goal of Reach-while-Avoid
(RWA) tasks is to find a controller π for a dynamical system
such that every trajectory {x1, x2...} produced under this con-
troller (i) never enters an unsafe (“bad”) state; and (ii) eventually
enters a goal (“good”) region or state. We can formally define
the problem as:

Definition 1 (Reach-while-Avoid Task).
Input: A dynamical system with a set of initial states
XI ⊆ X , a set of goal states XG ⊆ X , and a set of unsafe
states XU ⊆ X , where XI ∩ XU = ∅ and XG ∩ XU = ∅
Output: A controller π such that for every trajectory τ =
{x1, x2...} satisfying x1 ∈ XI :

1) Reach: ∃ t ∈ N. xt ∈ XG

2) Avoid: ∀ t ∈ N. xt /∈ XU

Some solutions for RWA tasks rely on control theoretic
principles. The approach in [27] trains Lyapunov and Bar-
rier certificates to solve RWA tasks. Hamilton-Jacobi (HJ)
reachability-based methods [11]) have also been employed to
solve RWA tasks [34], [43], [66]. Safe DRL is closely connected
to RWA, with its goal being to maximize cumulative rewards
while minimizing costs along a trajectory [14]. It has been
solved with both Lyapunov/Barrier methods [20], [73] and HJ
reachability methods [35], [74].

D. Other Verification Approaches

Reachability Analysis. Reachability analysis methods aim to
define and compute the set of final reachable states and then
verify that this set (i) does not include any bad states, and (ii) is
contained within the goal region. Reachability methods include
forward-tube and backward-tube verification [40], which either
propagate states forward from the starting set or backward from
the goal set. Other related work in reachability analysis includes
hybrid system verifiers [46], growing the set of reachable states
over a discrete action space [48], approximating reachable
states during forward and backward reachability [39], and

reformulating the dynamics of a system for easier reachability
verification [37].

Bounded Model Checking and k-induction. Bounded model
checking uses a symbolic analysis over k copies of a system
to check whether a bad state is reachable in k or fewer steps
from the starting set of states. k-induction is similar, except that
it starts from an arbitrary state and can thus be used to prove
that a bad state is never reached. Bounded model checking has
been explored in the WhiRL tool [33] using the neural network
verifier Marabou [50], [71]. [64] implements another tool for
checking adversarial cases and coverage using bounded model
checking for artificial neural networks. WhiRL 2.0 [7] adds k-
induction capabilities to WhiRL.

Design-for-Verification. Design-for-verification broadly en-
compasses any method which aims to modify the design and
training process to make verification easier. The Trainify frame-
work [47] uses a CEGAR-based approach to grow an easily
verifiable state space by repeatedly retraining the DRL system.
[25] motivates an optimized DRL training approach to reduce
the number of safety violations, easing formal verification. This
approach was also implemented in Marabou [50], [71].

III. 2D DOCKING PROBLEM

We adopt as a motivating case study benchmark the 2D
docking problem presented in [62]. The goal is to train a DRL
controller to safely navigate a deputy spacecraft to a chief
spacecraft within two-dimensional space. The reference frame
is defined such that the chief spacecraft is always at the origin
(0,0). The state of the deputy spacecraft is x = [x, y, ẋ, ẏ],
where (x, y) are the position of the spacecraft and (ẋ, ẏ) are
the respective directional velocities.

A. Dynamics

The system dynamics are defined according to the linearly-
approximate Clohessy-Wiltshire relative orbital motion equa-
tions in a non-inertial Hill’s reference frame [21], [42]. The
control input to the system is u = [Fx, Fy], where Fx and Fy

are the thrust forces applied to the deputy spacecraft in the x
and y directions. We follow [62], setting the deputy spacecraft
mass to m = 12 kg and the mean motion to n = 0.001027 rad/s.
The continuous time state dynamics of the system are given by
the following differential equations:

ẋ = [ẋ, ẏ, ẍ, ÿ] (4)

ẍ = 2nẏ + 3n2x + Fx

m
(5)

ÿ = −2nẋ + Fy

m
(6)

Integration using a discrete time step T yields a closed-form
next-state function. Given a state x = [x, y, ẋ, ẏ] and control in-
puts u = [Fx, Fy], the spacecraft’s next state x′i = [x′, y′, ẋ′, ẏ′]
after an elapsed time T is:

Authorized licensed use limited to: Hebrew University. Downloaded on December 12,2024 at 14:07:22 UTC from IEEE Xplore. Restrictions apply.

x′ = (2ẏ
n
+ 4x + Fx

mn2
) + (2Fy

mn
) + (− Fx

mn2
− 2ẏ

n
− 3x)

⋅ cos (nT) + (−2Fy

mn2
+ ẋ

n
) sin (nT)

(7)

y′ = (−2ẋ
n
+ y + 4Fy

mn2
) + (−2Fx

mn
− 3ẏ − 6nx)T + −3Fy

2m
t2

+ (− 4Fy

mn2
+ 2ẋ

n
) cos (nT) + (2Fx

mn2
+ 4ẏ

n
+ 6x)

⋅ sin (nT)

(8)

ẋ′ = (2Fx

mn
) + (−2Fy

mn
+ x) cos (nT) + (Fx

mn
+ 2ẏ

+ 3nx) sin (nT)
(9)

ẏ′ = (−2Fx

mn
− 3ẏ − 6nx) + (−3Fy

m
)T + (2Fx

mn
+ 4ẏ

+ 6nx) cos (nT) + (4Fy

mn
− 2ẋ) sin (nT)

(10)

B. Liveness —– Docking Region
The problem as given in [62] defines a docking region which

is a circle of radius 0.5 meters centered at the origin. The goal
is for the deputy spacecraft to eventually enter this region. To
simplify the verification query, it is easier to use linear bounds
for the goal region, so we use a square centered at the origin
with sides parallel to the axes of length 0.7 meters (note that
this square fits inside the docking region of [62]). Formally, our
liveness condition is:

∀α ∶ α ∈ τ∞. ∃t. ∣αt.x∣ ≤ 0.35 ∧ ∣αt.y∣ ≤ 0.35, (11)

where αt is the state at time t in trajectory α, and αt.x and
αt.y are the x and y components of αt.

C. Safety — Velocity Threshold
To minimize the risk to both spacecraft, a safety constraint

is imposed on the magnitude of the velocity of the deputy
spacecraft. The constraint depends on the distance from the
deputy. Formally, [62] requires the following state invariant:

√
ẋ2 + ẏ2 ≤ 0.2 + 2n

√
x2 + y2 (12)

We therefore define the unsafe region to be the negation of (12).
Again, we desire to instead use a linear constraint in order

to be compatible with our formal tools. We use the Euclidean
norm approximation of [16], which approximates the norm
by projecting it onto vectors in all different directions and
taking the one with the maximum magnitude. We use the two
inequalities:

max
i∈[1,ndirections]

(u1 ⋅ cos(
2(i − 1)π
ndirections

) + u2

⋅ sin(2(i − 1)π
ndirections

)) ≤
√

u2
1 + u2

2

(13)

and
1

cos(π/ndirections)
max

i∈[1,ndirections]
(u1 ⋅ cos(

2(i − 1)π
ndirections

)

+u2 ⋅ sin(
2(i − 1)π
ndirections

)) ≥
√

u2
1 + u2

2,

(14)

where ndirections is a positive integer. Larger values of
ndirections yield more precise approximations. We can simplify
this by noting that:

√
u2
1 + u2

2 =
√
∣u1∣2 + ∣u2∣2,

and then focusing our search only on vectors in the first
quadrant. Assuming ndirections is a multiple of 4, we get:

under(u1, u2) = max
i∈[1,ndirections/4+1]

(∣u1∣ ⋅ cos(
2(i − 1)π
ndirections

)

+ ∣u2∣ ⋅ sin(
2(i − 1)π
ndirections

))

≤
√

u2
1 + u2

2

(15)

and

over(u1, u2) =
1

cos(π/ndirections)
max

i∈[1,ndirections/4+1]
(∣u1∣

⋅ cos(2(i − 1)π
ndirections

) + ∣u2∣ ⋅ sin(
2(i − 1)π
ndirections

))

≥
√

u2
1 + u2

2.

(16)

Using these constraints, we can over-approximate the unsafe
region as

over(ẋt, ẏt) > 0.2 + 2n ⋅ under(xt, yt). (17)

This is a piece-wise linear constraint. Moreover, both the
absolute value function and the maximum function can be easily
encoded in neural network verification tools such as Marabou.
In our experiments, we use ndirections = 400.

D. DNN Setup

As in [62], we use Ray RLib’s Proximal Policy Optimization
(PPO) reinforcement learning algorithm to learn the system
dynamics, but we make four important alterations to improve
downstream verification, part of our design for verification
scheme.

1) Scenario Regions: To improve performance near the
docking region, we reduce the docking distance during training
from 0.5 meters to 0.25 meters. We also simplify the problem
by reducing the initial position of the deputy spacecraft from a
radius of 150 meters to only 5 meters. Scaling back up to larger
initial positions is part of an ongoing research effort.

2) Speed Observations: We limit the observations of the
agent to its x and y positions and respective ẋ and ẏ velocities,
eliminating the agent’s observations of its current speed and
the distance-dependent velocity constraint described in Equation
12. This makes it less likely that irregular trajectories will be
learned because of observations of the safety constraint. As a
result, liveness verification becomes easier.

3) Distance Reward: We keep the rewards relating to success
or failure, the safety constraint, and delta-v as presented in [62],
but we alter the distance change reward to use the L1 norm of
the position of the deputy — i.e., the Manhattan distance from
the deputy to the chief, rather than the nonlinear L2 norm. This
is to match the induction invariant described in Section IV. To
account for the new distance metric and previously-described

Authorized licensed use limited to: Hebrew University. Downloaded on December 12,2024 at 14:07:22 UTC from IEEE Xplore. Restrictions apply.

smaller initial distances, we developed a novel reward function
for distance change:

Rdnew
t = 2 (e−a1d

m
t − e−a1d

m
t−1) + 2 (e−a2d

m
t − e−a2d

m
t−1) , (18)

where dmi = ∣xi∣ + ∣xi∣, a1 = ln(2)
5

, and a2 = ln(2)
0.5

.

4) Model Architecture: Our DRL controller should be suf-
ficiently small to keep verification time reasonable and suffi-
ciently large to be able to learn the necessary behavior. We
found that reducing the hidden layer widths from 256 neurons
to 20 neurons, while maintaining two hidden layers, acheives a
good balance between verification time and expressive power.
Also, we swap the tanh activation functions for ReLU activation
functions since ReLU is supported by most neural network
verification tools (such as Marabou).

IV. USING k-INDUCTION FOR LIVENESS GUARANTEES

In this section, we present an approach for scalably verifying
a liveness property for the 2D docking problem presented
in Section III using k-induction. We describe the conceptual
approach, the experimental framework, and the results.

A. Proving Liveness by k-induction

In order to apply k-induction, we must find a way to reduce
a liveness property to a k-inductive property. Typically, this
is done by finding a ranking function, a function with a
well-founded co-domain, which can be shown to always be
decreasing by k-induction.

For the spacecraft, an obvious choice for a ranking function
is the distance from the deputy to the chief. In order to make
the function easier to reason about, we use a linear proxy
function for the actual distance, namely the Manhattan distance.
Unfortunately, it is not the case that this measure always
decreases, as the spacecraft may move away from the target.

Thus, we instead propose a property that ensures the space-
craft eventually starts moving towards the target. The property
is expressed as a logical disjunction: after k steps, either the
Manhattan distance decreases or the magnitude of the velocity
decreases. Again, we approximate the velocity magnitude by the
L1 norm, the sum of the absolute values of ẋ and ẏ. Formally,
if the current state is (x0, y0, ẋ0, ẏ0) and the future state after
k steps is (x′, y′, ẋ′, ẏ′), we must show:

(∣x′∣+∣y′∣)–(∣x0∣+∣y0∣) < –ϵ ⋁ (∣ẋ′∣+∣ẏ′∣)–(∣ẋ0∣+∣ẏ0∣) < –ϵ,
(19)

where ϵ is some positive value.

Proposition 1. If property (19) holds (for some k) for every
state, then eventually the spacecraft will be moving towards the
goal (i.e., the L1 norm of the position will decrease).

Proof. Suppose that from some starting state, (x0, y0, ẋ0, ẏ0),
the spacecraft follows a trajectory that never moves towards
the goal in the sense that the L1 norm never decreases. Let
(xi, yi, ẋi, ẏi) be the state after i time steps. This means that
for all i, ∣xi∣ + ∣yi∣ ≤ ∣xi+1∣ + ∣yi+1∣. Let Vi = ∣ẋi∣ + ∣ẏi∣. By (19),
we know that for each Vi, there must be some k, such that
Vi+k − Vi < −ϵ. Thus, for any n, we can construct a sequence
Vj0 , Vj1 , Vj2 , . . . Vjn such that j0 = 0 and Vji − Vji+1 > ϵ. If we

then take n > V0/ϵ, we get that Vjn < 0, which is impossible.

Algorithm. We verify (19) using Algorithm 1. We gradually
increase k until the property holds, a maximum of k = kmax is
reached, or a timeout is exceeded.
Algorithm 1: Algorithm for k-induction.
Require: Bounds on state components x0, y0, ẋ0, ẏ0, values

for kmin, kmax

Ensure: If result = UNSAT, then property (19) holds for all
states within the defined bounds.

1: for each k ∈ [kmin, kmax] do
2: Verify the negation of the distilled property:

¬
⎛
⎜⎜
⎝

(∣x′∣ + ∣y′∣)–(∣x0∣ + ∣y0∣) < –ϵ
⋁
(∣ẋ′∣ + ∣ẏ′∣)–(∣ẋ0∣ + ∣ẏ0∣) < –ϵ)

⎞
⎟⎟
⎠

3: if UNSAT then
4: result = [UNSAT, k]
5: break;
6: else
7: result = [SAT, k, counterexample k-step trajectory].
8: end if
9: end for

10: return result

Input bounds for the state space can be chosen according
to the problem specification. It is also important to note that
different kmin and kmax values can be chosen. In practice, in
order to make the verification more tractable, we first split the
state space into subregions, then call the algorithm on each
subregion. For each subregion of the state space, we explore
values of k from kmin to kmax. For each k, a neural network
verifier is invoked to check if the negation of the property holds
after k steps. There are three possible results of the algorithm.

1) If the negation of the property is satisfiable for each k, the
algorithm returns SAT along with a counter-example.

2) If the negation of the property is unsatisfiable for some k,
this means that the property holds for that value of k. In
this case, the algorithm returns UNSAT together with the
value of k for which unsatisfiability was determined. In
this case, verification of the region is complete.

3) If a predefined timeout is exceeded, the algorithm termi-
nates and a timeout result is returned.

Experimental Setup. We use Marabou for the neural
network verification step. We set the following parameters
for Marabou: “verbosity=0, timeoutInSeconds=5000, num-
Workers=10, tighteningStrategy=“sbt”, solveWithMILP=True”.
Marabou also requires a back-end linear programming engine.
We use Gurobi 9.5.

We start with positional bounds of ∣x∣, ∣y∣ ∈ [−25,25] and
velocity bounds of ẋ, ẏ ∈ [−0.2,0.2]). We initially divide these
into 25 subregions by focusing on 5×5 regions in the positional
space. A subregion is further subdivided if Algorithm 1 times
out. We set kmin to 1, kmax to 20, and use a timeout of 1.4
hours for each loop iteration (i.e., 30 hours if all values of k
time out).

Results. We end up with 71 subregions. For each subregion,
Algorithm 1 returns UNSAT. The minimum returned value for

Authorized licensed use limited to: Hebrew University. Downloaded on December 12,2024 at 14:07:22 UTC from IEEE Xplore. Restrictions apply.

(a) Initial neural network.

(b) Retrained neural network.

Fig. 1: Design for Verification: An initial controller trajectory
compared to a final controller trajectory, with the same initial
state. The final controller has a more direct trajectory which is
more conducive to verification via k-induction.

k is 1, the maximum is 12, the average is 5, and the median is
3.

Notably, regions close to the goal region are more difficult:
they require more subregions and take longer, whereas regions
more distant can sometimes be verified without utilizing addi-
tional subregions. The minimum runtime (in seconds) for any
subregion is 0.02, the maximum is 4295.86, the average is
193.62, and the median is 1.76.

As a sanity check, we validated our results experimentally
by running a simulation framework. Starting from randomly
sampled points in the state space, we confirmed that the k-
inductive property holds on the trajectory starting at each point.
These checks also succeeded.

Discussion. Initially, we applied our approach to the neural
network controller described in [62]. The original network
topology (two hidden layers with 256 nodes each) resulted
in lengthy verification times. Moreover, for many regions, the
verification failed: we discovered counter-examples for all tested
values of k.

Figure 1a shows an example counterexample
trajectory from the original neural network. The starting
state is [x = 0.5347935396499356, y = 0.51, ẋ =
0.00038615766226848813, ẏ = 0.00038615766226848813].
The controller moves steadily away from the goal, and only
after many steps turns the spacecraft around to move towards
the goal.

Such trajectories provided motivation for the design changes
mentioned in Section III-D. In particular, the changes to the
reward function strongly incentivize the controller to move
towards the goal region. Figure 1b shows the trajectory using

the verified controller, starting from the same starting state.
Note how the spacecraft moves nearly directly towards the goal
region.

The successful verification of (19) is not sufficient to establish
that the deputy eventually reaches the chief. We would need to
establish a second property, namely that once the spacecraft
is moving towards its goal, it always gets closer (by at least
some ϵ) within k steps. Let xi, yi be the position i steps from
some starting position (x0, y0). This can be formalized with the
property:

(∣x1∣ + ∣y1∣)–(∣x0∣ + ∣y0∣) < 0 Ô⇒
∃k. (∣xk ∣ + ∣yk ∣)–(∣x0∣ + ∣y0∣) < –ϵ.

(20)

Formally verifying this property is left to future work.

B. An Alternative Approach using Polar Coordinates

Before moving to the Manhattan distance, we explored an
alternative approach using polar coordinates, which allows the
L2 norm to be used directly in the invariant while maintaining
linearity. More specifically, if r is the distance to the origin and
θ is the angle from the x-axis, then we can write the equivalent
of property (19) as:

r′ − r < −ϵ ∨ ṙ′ − ṙ < −ϵ. (21)

Note how much simpler property 21 is compared with prop-
erty (19). However, there remain two challenges: training a polar
controller and converting the dynamics to polar coordinates.

Training a controller for the polar system is not straight-
forward; it requires complex parameter changes, for example,
adjusting the learning rate, observation vector order, and the
length and normalization constants. However, these challenges
are ultimately solvable, and we were able to train a network that
takes polar coordinate inputs. The output is still Fx and Fy , as
we did not envision changing the physical spacecraft system.

The second challenge proved more difficult. We needed a way
to calculuate new values of r and θ, given current values of r,
θ, ṙ, and θ̇, as well as Fx and Fy . We did not find closed-form
solutions in the literature for the Clohessy–Wiltshire Equations
utilizing polar coordinates. We thus converted equations (7)
through (10) to polar coordinates using the standard conversion
equations:

x = r cos θ, y = r sin θ, r =
√
x2 + y2, θ = tan−1 y

x
(22)

We encoded the derivation of the equations directly in Python,
which allowed us to confirm in simulation that our polar neural
network had behavior similar to that of the original model.
However, attempting formal verification with the new dynamics
proved difficult. The new dynamics are highly non-linear. We
attempted to use the OVERT tool2 for the purpose of linearizing
r and θ. However, the results were too complex and ultimately
unsuccessful. It was at this point that we decided to instead use
the L1 norm and revert to standard rectangular coordinates.

We report this effort here in order to highlight both the
potential benefits and pitfalls of using a different coordinate

2https://github.com/sisl/OVERT.jl

Authorized licensed use limited to: Hebrew University. Downloaded on December 12,2024 at 14:07:22 UTC from IEEE Xplore. Restrictions apply.

representation. If the dynamics had been more tractable in polar
space, this would have been an attractive direction.

V. ALTERNATE VERIFICATION APPROACHES

While exploring the k-induction approaches described above,
we concurrently explored an alternative approach using Neural
Lyapunov Barrier certificates. The results of that effort represent
the most complete verification results we have obtained to date
and are reported in [56]. Here, for convenience, we review that
approach at a high level and present some details not reported
there. We also discuss several reachability-based approaches,
which we also applied to the 2D docking problem, but which
were, ultimately, unsuccessful.

A. RWA Certificates

Definition 2. A function V ∶ X ↦ R is an RWA certificate
for the task defined in Definition 1 if there exist some α >
β ≥ γ and ϵ > 0, such that the following constraints are
satisfied.

∀x ∈ X . V (x) ≥ γ (23)
∀x ∈ XI . V (x) ≤ β (24)
∀x ∈ X ∖ XG. V (x) ≤ β → V (x) − V (f(x,π(x))) ≥ ϵ

(25)
∀x ∈ XU . V (x) ≥ α (26)

Any tuple of values (α,β, ϵ, γ) for which these conditions hold
is called a witness for the certificate.3 RWA certificates provide
the following guarantee.

Lemma 1. If V is an RWA certificate for a dynamical system
with witness (α,β, ϵ, γ), then for every trajectory τ starting
from a state x ∈ X ∖XG such that V (x) ≤ β, τ will eventually
contain a state in XG without ever passing through a state in
XU .

We use reinforcement learning to jointly train neural networks
for both the controller and the corresponding RWA certificate.
RWA Training Loss. The training objective for RWA certifi-
cates is described below:

Os = cs ∑
i ∣xi∈XI

ReLU(δ1 + V (xi) − β)
∑i ∣xi∈XI

1
(27)

Od = cd ∑
i ∣xi∈X∖(XU∪XG),V (xi)<β

ReLU(δ2 + ϵ + V (x′i) − V (xi))
∑i ∣xi∈X∖(XU∪XG),V (xi)<β 1

(28)

Ou = cu ∑
i ∣xi∈XU

ReLU(δ3 − V (xi) + α)
∑i ∣xi∈XU

1
(29)

O = Os +Od +Ou (30)

Equation (27) penalizes deviations from constraint (24),
Equation (28) penalizes deviations from constraint (25), and
Equation (29) penalizes deviations from constraint (26). We
incorporate parameters δ1 > 0, δ2 > 0, and δ3 > 0, which can

3These constraints are similar to those in [29] but are specific to discrete-
time systems and do not place constraints on a compact safe set, opting to use
an unsafe set instead.

be used to tune how strongly the certificate over-approximates
adherence to each constraint. Similarly, constants cs, cd, cu can
be used to tune the relative weight of the two objectives. The
final training objective O in (30) is what the optimizer seeks to
minimize, by using stochastic gradient descent (SGD) or other
optimization techniques.

γ lower bound. It is important to note that the RWA
training objective does not explicitly penalize deviations from
Equation (23). Instead, because V is implemented as a neural
network using floating-point arithmetic, it has only a finite
number of possible inputs and outputs, so Equation (23) must
hold for some γ. In practice, we can use Marabou to find γ
by doing a linear search for the minimum value of V : we
simply set γ to some initial value, say α, then repeatedly check
∃x. V (x) < γ, updating γ with the new value each time the
query is satisfiable, and repeat until the query is unsastisfiable.

Sampling from XU and X∖XG. While XI is typically defined
as having both upper and lower bounds on state variables, this
is not the case for XU , which often has only lower bounds on
state variables (this is the case, for example, for the 2D docking
problem defined in Section III).

However, during training, we do impose an upper bound
on the states sampled from XU . Specifically, if the controller
operates over n-dimensional states x = [x1, x2, .., xn], we
sample points satisfying the following constraints:

(x1 > p1) ∨ (x2 > p2) ∨ ... ∨ (xn > pn) (31)
(x1 < p1 + γ1) ∧ (x2 < p2 + γ2) ∧ ... ∧ (xn < pn + γn) (32)

Here, 31 represents the (given) lower bounds on the unsafe
region XU , and γ1, ..., γn are chosen to be strictly greater than
0.

A similar issue arises when sampling from X ∖XG. This can
often be solved simply by sampling instead from X∖(XG∪XU),
as the lower bounds on variables in XU then create upper bounds
for the sampling step.

Masking out XU . For objective 28, if x′i lies in XU , we
replace the actual value of V (x′i) with α. This is because we
learn correct functional behaviors of XU through objective 29
regardless, and thus using the actual value of V (x′i) would lead
to unnecessary training effort and excessive penalties.

Certificate Warmup. To improve training, the objective is
used to train the certificate V alone for a few iterations, after
which training includes both the certificate and the controller.
This is done to avoid erratic training of the controller when V
has random weights.

RWA Verification. In order to obtain formal guarantees, we
use Marabou to formally verify the constraints in Definition 2.
Verification of RWA constraints is generally straightforward, but
we have to similarly bound XU and X ∖XG to verify constraints
26 and 25 respectively. Instead of using X ∖ XG as the input
space for 25, we use instead X ∖(XG∪XU), which provides the
same guarantees. Moreover, instead of using XU as the input
space for 26, we use the bounded space, call it XS

U , used for
data sampling. To ensure this provides the same guarantees,
we check that no states beyond the upper bound of XS

U are
reachable.

Authorized licensed use limited to: Hebrew University. Downloaded on December 12,2024 at 14:07:22 UTC from IEEE Xplore. Restrictions apply.

Instead of encoding verification as a single property passed to
the DNN verifier, verification is partitioned into muliple queries.
This is done by paritioning the input space in the original
property into equally sized smaller state spaces, over which the
same property is checked. This helps avoid unreasonably long
verification times that can occur with a large monolithic query.

Retraining. If any of the RWA verification checks return
counterexamples, these are used to augment the training data
set, and then training is done again. This process repeats until no
more counterexamples are found. We weight counterexamples
more heavily in the objective function 30 (compared to points
in the initial training dataset) in order to focus the training on
removing the counterexamples.

Results and Analysis. As shown in prior work in [56], RWA
certificates can provide liveness and safety guarantees for the
2D spacecraft docking problem defined in Section III. More
details and a pointer to the code can be found in [56].

B. Reachability Analysis Approaches

In this subsection, we discuss approaches based on reacha-
bility analysis. While these approaches were ultimately unsuc-
cessful on the case study problem outlined in section III, we
still mention them here, as the reasons for their failure may be
of interest, and they may be useful on other problems.

Forward-tube and Backward-tube Reachability. Forward-
tube and backward-tube reachability attempt to generate a path
over abstract state spaces (i.e., sets of states) from the starting
state space to the goal state space. At each step along the
abstract path, we check that every state in the abstract state
set meets any safety guarantees.

In forward-tube reachability, a starting set of states X 0
F and

step size k is defined. Then, a set of states X 1
F is constructed

such that all states reachable from X 0
F in k steps are contained

within X 1
F . This process is continued, and additional sets of

states X i+1
F are constructed, each with the property that they

contain the states reachable from X i
F in k steps. If at some

point, the constructed set is a subset of the goal region, then
the liveness property is ensured. However, it can be very chal-
lenging to find a sequence of sets of states X i

F that eventually
lead to a subset of the goal region. This was the case for the
spacecraft example.

On the other hand, in backward-tube reachability, we start
with X 0

B set equal to the goal states and define a step size
k. Then, a set of states X 1

B is constructed such that all states
reachable from X 1

B in k steps are contained within X 0
B . Again,

this process can be repeated until the set of states includes the
initial states. A difficulty with this approach is computing a
sufficiently large previous set of states at each step.

Grid Reachability. Grid reachability is a process which first
partitions a bounded subset of the state space into cells, then
computes a directed graph where each cell is a vertex, and each
directed edge (a, b) denotes that vertex b is reachable from
vertex a in k steps, for a specific k, as shown in Fig. 2. The
goal is to show that for all paths constructed from cells in the
defined initial state space, a goal region reachable. However, to
ensure liveness, it is also necessary to show that the graph has

Fig. 2: Grid reachability, with a cell navigating towards the
docking region (in green)

Algorithm 2: APPLYING GRID REACHABILITY

1 Let IS be the input space
2 Let k be the step size
3 Divide IS into cells C = c0, c1, ..., cn
4 Let vertices V = C
5 Initialize edge set E to be the empty set
6 i = 0
7 for i ≤ n do
8 Denote set of adjacent cells to ci as Cr

9 Add ci to Cr if self-cycles are possible
10 for cr ∈ Cr do
11 if cr is reachable from ci in k steps then
12 Add directed edge (ci, cr) to E
13 i = i + 1
14 Let G ∶= (V,E)
15 Check for cycles in G
16 if G is acyclic then
17 Determine cells Cs with no paths leaving input

space
18 return Cs as cells meeting liveness property

no cycles and that it is not possible to reach any cells beyond
the partitioned state space.

We applied this technique to the spacecraft example. A
challenge is preventing self-cycles in the graph. One strategy
for doing this is to construct cells where at least one velocity
component never changes sign. It is easy to see that for such
cells, the spacecraft cannot remain in the cell forever, so we
can ignore self-loops on such cells. For cells containing a
velocity sign-change, we use a very narrow velocity range,
narrow enough to ensure that the spacecraft leaves the range in k
steps. It is also desirable to limit the number of cells reachable
from a given cell, to avoid the need to do many reachability
checks. This can be ensured by making the cells large enough
that it is impossible to cross more than one cell in a single set
of k steps.

Analysis of Grid Reachability. We applied grid reachability to
a state space with x, y ∈ [−10,10] and ẋ, ẏ ∈ [−1.6,1.6] using
Algorithm 2. A binary search was conducted using Marabou to
determine cell bounds such that cells could only reach adjacent
cells. The step size k was chosen to be 1.

We found a variety of cycles of increasing lengths, even
as cells were divided further in an attempt to refine the grid

Authorized licensed use limited to: Hebrew University. Downloaded on December 12,2024 at 14:07:22 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Spurious trajectory with grid reachability

abstraction. Moreover, we found that all cells had paths leaving
the input space. We showcase one such trajectory of cells with
this behavior in Fig. 3. In this trajectory, we see that for the
first three steps, the velocity component ranges are negative,
thereby guiding the spacecraft towards the goal region, but there
is a path from cell 3 to cell 4 that induces a positive velocity
component, allowing the path to diverge.

Ultimately, the grid abstraction does not lend itself well to
the liveness task because such spurious paths are difficult to rule
out. While further refinement of the grid approach is possible
and could eventually yield a workable approach, we determined
that the complexity and difficulty were too high, and abandoned
it in favor of the certificate approach mentioned earlier.

VI. CONCLUSION

We have presented methods for verifying safety and liveness
properties for DRL systems using k-induction, Neural Lyapunov
Barrier Certificates, and reachability analysis. We explore their
effectiveness on a 2D spacecraft docking problem posed in
previous work. For this problem, we show how a k-induction
based approach can be used alongside a design-for-verification
training scheme to provide liveness guarantees. We also discuss
how Neural Lyapunov Barrier Certificates can be used to
provide both liveness and safety guarantees. While reachability
analysis ultimately did not provide any formal guarantees, we
discuss the approach and its limitations. In future work, we plan
to explore scaling these methods to more complex and realistic
control systems.

VII. ACKNOWLEDGEMENTS

This work was supported by AFOSR (FA9550-22-1-0227),
the Stanford CURIS program, the NSF-BSF program (NSF:
1814369, BSF: 2017662), and the Stanford Center for AI Safety.
The work of Amir was further supported by a scholarship
from the Clore Israel Foundation. We thank Thomas Henzinger
(ISTA), Chuchu Fan (MIT), and Songyuan Zhang (MIT) for
useful conversations and advice, which contributed to the suc-
cess of this project.

REFERENCES

[1] P. Alamdari, G. Avni, T. Henzinger, and A. Lukina. Formal Methods
with a Touch of Magic. In Proc. 20th Int. Conf. on Formal Methods in
Computer-Aided Design (FMCAD), pages 138–147, 2020.

[2] B. Alpern and F. Schneider. Recognizing safety and liveness. Distributed
Computing, 2:117–126, 09 1987.

[3] A. Ames, X. Xu, J. W. Grizzle, and P. Tabuada. Control barrier function
based quadratic programs for safety critical systems. Trans. on Automatic
Control, 2017.

[4] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and
P. Tabuada. Control barrier functions: Theory and applications. In
European Control Conf., 2019.

[5] G. Amir, D. Corsi, R. Yerushalmi, L. Marzari, D. Harel, A. Farinelli, and
G. Katz. Verifying Learning-Based Robotic Navigation Systems. In Proc.
29th Int. Conf. on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), pages 607–627, 2023.

[6] G. Amir, O. Maayan, T. Zelazny, G. Katz, and M. Schapira. Verifying
Generalization in Deep Learning. In Proc. 35th Int. Conf. on Computer
Aided Verification (CAV), pages 438–455, 2023.

[7] G. Amir, M. Schapira, and G. Katz. Towards Scalable Verification of Deep
Reinforcement Learning. In Proc. 21st Int. Conf. on Formal Methods in
Computer-Aided Design (FMCAD), pages 193–203, 2021.

[8] G. Amir, H. Wu, C. Barrett, and G. Katz. An SMT-Based Approach for
Verifying Binarized Neural Networks. In Proc. 27th Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
pages 203–222, 2021.

[9] G. Amir, T. Zelazny, G. Katz, and M. Schapira. Verification-Aided Deep
Ensemble Selection. In Proc. 22nd Int. Conf. on Formal Methods in
Computer-Aided Design (FMCAD), pages 27–37, 2022.

[10] G. Anderson, S. Pailoor, I. Dillig, and S. Chaudhuri. Optimization
and Abstraction: a Synergistic Approach for Analyzing Neural Network
Robustness. In Proc. 40th ACM SIGPLAN Conf. on Programming
Languages Design and Implementations (PLDI), pages 731–744, 2019.

[11] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin. Hamilton-Jacobi
reachability: A brief overview and recent advances. In Conf. on Decision
and Control, 2017.

[12] G. Basile and G. Marro. Controlled and conditioned invariant subspaces
in linear system theory. Journal of Optimization Theory and Applications,
3:306–315, 1969.

[13] S. Bassan, G. Amir, D. Corsi, I. Refaeli, and G. Katz. Formally Explaining
Neural Networks within Reactive Systems. In Proc. 23rd Int. Conf.
on Formal Methods in Computer-Aided Design (FMCAD), pages 10–22,
2023.

[14] L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, and
A. P. Schoellig. Safe learning in robotics: From learning-based control
to safe reinforcement learning. Annual Review of Control, Robotics, and
Autonomous Systems, 5:411–444, 2022.

[15] R. Bunel, I. Turkaslan, P. Torr, P. Kohli, and P. Mudigonda. A Unified
View of Piecewise Linear Neural Network Verification. In Proc. 32nd
Conf. on Neural Information Processing Systems (NeurIPS), pages 4795–
4804, 2018.

[16] J.-T. Camino, C. Artigues, L. Houssin, and S. Mourgues. Linearization
of euclidean norm dependent inequalities applied to multibeam satellites
design. Computational Optimization and Applications, 73:679–705, 2019.

[17] M. Casadio, E. Komendantskaya, M. Daggitt, W. Kokke, G. Katz,
G. Amir, and I. Refaeli. Neural Network Robustness as a Verification
Property: A Principled Case Study. In Proc. 34th Int. Conf. on Computer
Aided Verification (CAV), pages 219–231, 2022.

[18] Y.-C. Chang and S. Gao. Stabilizing neural control using self-learned
almost lyapunov critics. 2021 IEEE International Conference on Robotics
and Automation (ICRA), pages 1803–1809, 2021.

[19] Y.-C. Chang, N. Roohi, and S. Gao. Neural lyapunov control. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019.

[20] Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh. A
lyapunov-based approach to safe reinforcement learning. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
editors, Advances in Neural Information Processing Systems 31, pages
8092–8101. Curran Associates, Inc., 2018.

[21] W. Clohessy and R. Wiltshire. Terminal guidance system for satellite
rendezvous. Journal of the aerospace sciences, 27(9):653–658, 1960.

[22] E. Cohen, Y. Elboher, C. Barrett, and G. Katz. Tighter Abstract Queries
in Neural Network Verification. In Proc. 24th Int. Conf. on Logic for
Programming, Artificial Intelligence and Reasoning (LPAR), 2023.

[23] D. Corsi, G. Amir, G. Katz, and A. Farinelli. Analyzing Adversarial
Inputs in Deep Reinforcement Learning, 2024. Technical Report. https:
//arxiv.org/abs/2402.05284.

[24] D. Corsi, G. Amir, A. Rodriguez, C. Sanchez, G. Katz, and R. Fox.
Verification-Guided Shielding for Deep Reinforcement Learning, 2024.
Technical Report. http://arxiv.org/abs/2406.06507.

[25] D. Corsi, E. Marchesini, A. Farinelli, and P. Fiorini. Formal verification for
safe deep reinforcement learning in trajectory generation. In 2020 Fourth
IEEE International Conference on Robotic Computing (IRC), pages 352–
359, 2020.

[26] C. Dawson, S. Gao, and C. Fan. Safe control with learned certificates: A
survey of neural lyapunov, barrier, and contraction methods for robotics
and control. IEEE Transactions on Robotics, 2023.

[27] C. Dawson, Z. Qin, S. Gao, and C. Fan. Safe nonlinear control
using robust neural lyapunov-barrier functions. In Conference on Robot
Learning, pages 1724–1735. PMLR, 2022.

Authorized licensed use limited to: Hebrew University. Downloaded on December 12,2024 at 14:07:22 UTC from IEEE Xplore. Restrictions apply.

[28] J. L. C. B. de Farias and W. M. Bessa. Intelligent control with artificial
neural networks for automated insulin delivery systems. Bioengineering,
9(11):664, 2022.

[29] A. Edwards, A. Peruffo, and A. Abate. A general verification framework
for dynamical and control models via certificate synthesis, 2023.

[30] R. Ehlers. Formal Verification of Piece-Wise Linear Feed-Forward Neural
Networks. In Proc. 15th Int. Symp. on Automated Technology for
Verification and Analysis (ATVA), pages 269–286, 2017.

[31] Y. Elboher, E. Cohen, and G. Katz. Neural Network Verification using
Residual Reasoning. In Proc. 20th Int. Conf. on Software Engineering
and Formal Methods (SEFM), pages 173–189, 2022.

[32] Y. Elboher, J. Gottschlich, and G. Katz. An Abstraction-Based Framework
for Neural Network Verification. In Proc. 32nd Int. Conf. on Computer
Aided Verification (CAV), pages 43–65, 2020.

[33] T. Eliyahu, Y. Kazak, G. Katz, and M. Schapira. Verifying learning-
augmented systems. Proceedings of the 2021 ACM SIGCOMM 2021
Conference, 2021.

[34] J. F. Fisac, M. Chen, C. J. Tomlin, and S. S. Sastry. Reach-avoid problems
with time-varying dynamics, targets and constraints. In Proceedings of the
18th international conference on hybrid systems: computation and control,
pages 11–20, 2015.

[35] M. Ganai, Z. Gong, C. Yu, S. L. Herbert, and S. Gao. Iterative
reachability estimation for safe reinforcement learning. In Advances in
Neural Information Processing Systems, 2023.

[36] M. Ganai, C. Hirayama, Y.-C. Chang, and S. Gao. Learning stabilization
control from observations by learning lyapunov-like proxy models. 2023
IEEE International Conference on Robotics and Automation (ICRA), pages
2913–2920, 2023.

[37] O. Gates, M. Newton, and K. Gatsis. Scalable forward reachability
analysis of multi-agent systems with neural network controllers, 2023.

[38] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,
2016.

[39] S. Govindaraju and D. Dill. Verification by approximate forward and
backward reachability. In 1998 IEEE/ACM International Conference
on Computer-Aided Design. Digest of Technical Papers (IEEE Cat.
No.98CB36287), pages 366–370, 1998.

[40] A. Gupta and I. Hwang. Safety verification of model based reinforcement
learning controllers, 2020.

[41] W. Haddad and V. Chellaboina. Nonlinear dynamical systems and control:
A lyapunov-based approach. Nonlinear Dynamical Systems and Control:
A Lyapunov-Based Approach, 01 2008.

[42] G. W. Hill. Researches in the lunar theory. American journal of
Mathematics, 1(1):5–26, 1878.

[43] K.-C. Hsu, V. Rubies-Royo, C. J. Tomlin, and J. F. Fisac. Safety
and liveness guarantees through reach-avoid reinforcement learning. In
Proceedings of Robotics: Science and Systems, Virtual, 7 2021.

[44] T. Huang, S. Gao, and L. Xie. A neural lyapunov approach to transient
stability assessment of power electronics-interfaced networked microgrids.
IEEE transactions on smart grid, 13(1):106–118, 2021.

[45] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety Verification
of Deep Neural Networks. In Proc. 29th Int. Conf. on Computer Aided
Verification (CAV), pages 3–29, 2017.

[46] R. Ivanov, J. Weimer, R. Alur, G. J. Pappas, and I. Lee. Verisig: verifying
safety properties of hybrid systems with neural network controllers, 2018.

[47] P. Jin, J. Tian, D. Zhi, X. Wen, and M. Zhang. Trainify: A cegar-driven
training and verification framework for safe deep reinforcement learning.
In Computer Aided Verification: 34th International Conference, CAV 2022,
Haifa, Israel, August 7–10, 2022, Proceedings, Part I, page 193–218,
Berlin, Heidelberg, 2022. Springer-Verlag.

[48] K. D. Julian and M. J. Kochenderfer. A reachability method for verifying
dynamical systems with deep neural network controllers, 2019.

[49] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex: An
Efficient SMT Solver for Verifying Deep Neural Networks. In Proc. 29th
Int. Conf. on Computer Aided Verification (CAV), pages 97–117, 2017.

[50] G. Katz, D. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah,
S. Thakoor, H. Wu, A. Zeljić, D. Dill, M. Kochenderfer, and C. Barrett.
The Marabou Framework for Verification and Analysis of Deep Neural
Networks. In Proc. 31st Int. Conf. on Computer Aided Verification (CAV),
pages 443–452, 2019.

[51] B. Könighofer, F. Lorber, N. Jansen, and R. Bloem. Shield Synthesis
for Reinforcement Learning. In Proc. Int. Symposium on Leveraging
Applications of Formal Methods, Verification and Validation (ISoLA),
pages 290–306, 2020.

[52] L. Kuper, G. Katz, J. Gottschlich, K. Julian, C. Barrett, and M. Kochen-
derfer. Toward Scalable Verification for Safety-Critical Deep Networks,
2018. Technical Report. https://arxiv.org/abs/1801.05950.

[53] B. Li, S. Wen, Z. Yan, G. Wen, and T. Huang. A survey on the control
lyapunov function and control barrier function for nonlinear-affine control
systems. IEEE/CAA Journal of Automatica Sinica, 10(3):584–602, 2023.

[54] Y. Li. Deep Reinforcement Learning: An Overview, 2017. Technical
Report. http://arxiv.org/abs/1701.07274.

[55] A. Lomuscio and L. Maganti. An Approach to Reachability Analysis
for Feed-Forward ReLU Neural Networks, 2017. Technical Report. http:
//arxiv.org/abs/1706.07351.

[56] U. Mandal, G. Amir, H. Wu, I. Daukantas, F. Newell, U. Ravaioli,
B. Meng, M. Durling, M. Ganai, T. Shim, G. Katz, and C. Barrett.
Formally Verifying Deep Reinforcement Learning Controllers with Lya-
punov Barrier Certificates. In Proc. 24th Int. Conf. on Formal Methods
in Computer-Aided Design (FMCAD), 2024.

[57] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng. Nerf: Representing scenes as neural radiance fields for view
synthesis. Communications of the ACM, 65(1):99–106, 2021.

[58] M. Ostrovsky, C. Barrett, and G. Katz. An Abstraction-Refinement
Approach to Verifying Convolutional Neural Networks. In Proc. 20th.
Int. Symposium on Automated Technology for Verification and Analysis
(ATVA), pages 391–396, 2022.

[59] P. Prabhakar and Z. Afzal. Abstraction Based Output Range Analysis
for Neural Networks, 2020. Technical Report. https://arxiv.org/abs/2007.
09527.

[60] Z. Qin, T.-W. Weng, and S. Gao. Quantifying safety of learning-based
self-driving control using almost-barrier functions. In 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages
12903–12910. IEEE, 2022.

[61] Z. Qin, K. Zhang, Y. Chen, J. Chen, and C. Fan. Learning safe multi-agent
control with decentralized neural barrier certificates. In ICLR, 2021.

[62] U. J. Ravaioli, J. Cunningham, J. McCarroll, V. Gangal, K. Dunlap, and
K. L. Hobbs. Safe reinforcement learning benchmark environments for
aerospace control systems. In 2022 IEEE Aerospace Conference (AERO),
pages 1–20. IEEE, 2022.

[63] A. Rodriguez, G. Amir, D. Corsi, C. Sanchez, and G. Katz. Shield
Synthesis for LTL Modulo Theories, 2024. Technical Report. http:
//arxiv.org/abs/2406.04184.

[64] L. H. Sena, I. V. Bessa, M. R. Gadelha, L. C. Cordeiro, and E. Mota.
Incremental bounded model checking of artificial neural networks in cuda.
In 2019 IX Brazilian Symposium on Computing Systems Engineering
(SBESC), pages 1–8, 2019.

[65] G. Singh, T. Gehr, M. Puschel, and M. Vechev. An Abstract Domain for
Certifying Neural Networks. In Proc. 46th ACM SIGPLAN Symposium
on Principles of Programming Languages (POPL), 2019.

[66] O. So and C. Fan. Solving stabilize-avoid optimal control via epigraph
form and deep reinforcement learning. In Proceedings of Robotics:
Science and Systems, 2023.

[67] V. Talpaert, I. Sobh, B. R. Kiran, P. Mannion, S. Yogamani, A. El-Sallab,
and P. Perez. Exploring applications of deep reinforcement learning for
real-world autonomous driving systems, 2019.

[68] V. Tjeng, K. Xiao, and R. Tedrake. Evaluating Robustness of Neural
Networks with Mixed Integer Programming. In Proc. 7th Int. Conf. on
Learning Representations (ICLR), 2019.

[69] M. Tong, C. Dawson, and C. Fan. Enforcing safety for vision-based
controllers via control barrier functions and neural radiance fields. In
2023 IEEE International Conference on Robotics and Automation (ICRA),
pages 10511–10517. IEEE, 2023.

[70] M. Usman, D. Gopinath, Y. Sun, Y. Noller, and C. Pǎsǎreanu. NNrepair:
Constraint-based Repair of Neural Network Classifiers, 2021. Technical
Report. http://arxiv.org/abs/2103.12535.

[71] H. Wu, O. Isac, A. Zeljić, T. Tagomori, M. Daggitt, W. Kokke, I. Refaeli,
G. Amir, K. Julian, S. Bassan, et al. Marabou 2.0: A Versatile Formal
Analyzer of Neural Networks. In Proc. 36th Int. Conf. on Computer Aided
Verification (CAV), 2024.

[72] X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames. Robustness of control
barrier functions for safety critical control. Int. Federation of Automatic
Control, 2015.

[73] Y. Yang, Y. Jiang, Y. Liu, J. Chen, and S. E. Li. Model-free safe
reinforcement learning through neural barrier certificate. IEEE Robotics
and Automation Letters, 2023.

[74] D. Yu, H. Ma, S. Li, and J. Chen. Reachability constrained reinforcement
learning. In International Conference on Machine Learning, pages 25636–
25655. PMLR, 2022.

[75] H. Yu, C. Hirayama, C. Yu, S. Herbert, and S. Gao. Sequential neural
barriers for scalable dynamic obstacle avoidance. In 2023 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages
11241–11248. IEEE, 2023.

Authorized licensed use limited to: Hebrew University. Downloaded on December 12,2024 at 14:07:22 UTC from IEEE Xplore. Restrictions apply.

